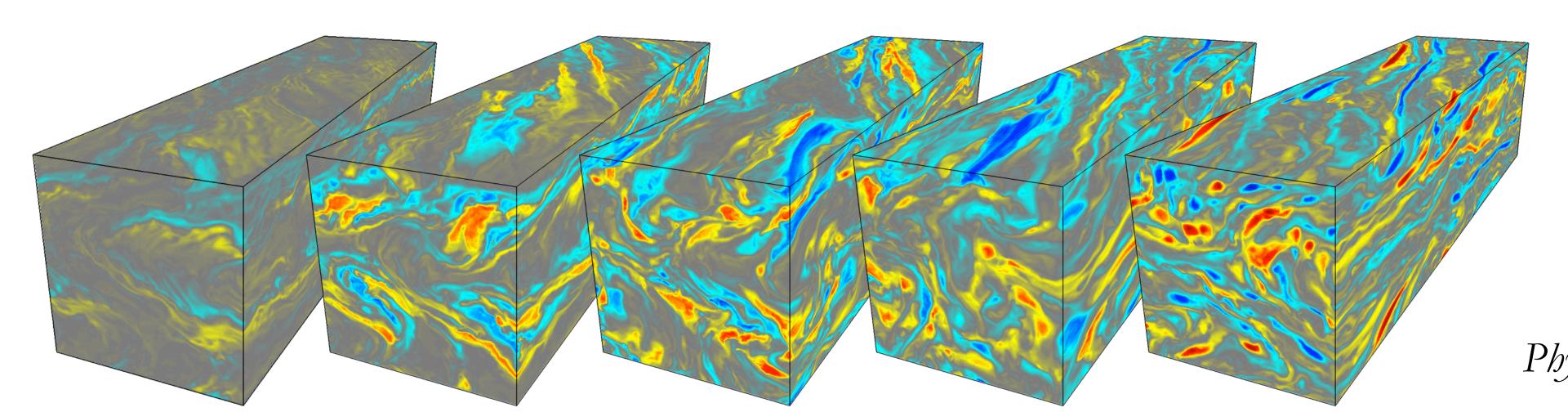


Matthew Kunz Princeton University

Magnetorotational Turbulence and Dynamo in a Collisionless Plasma

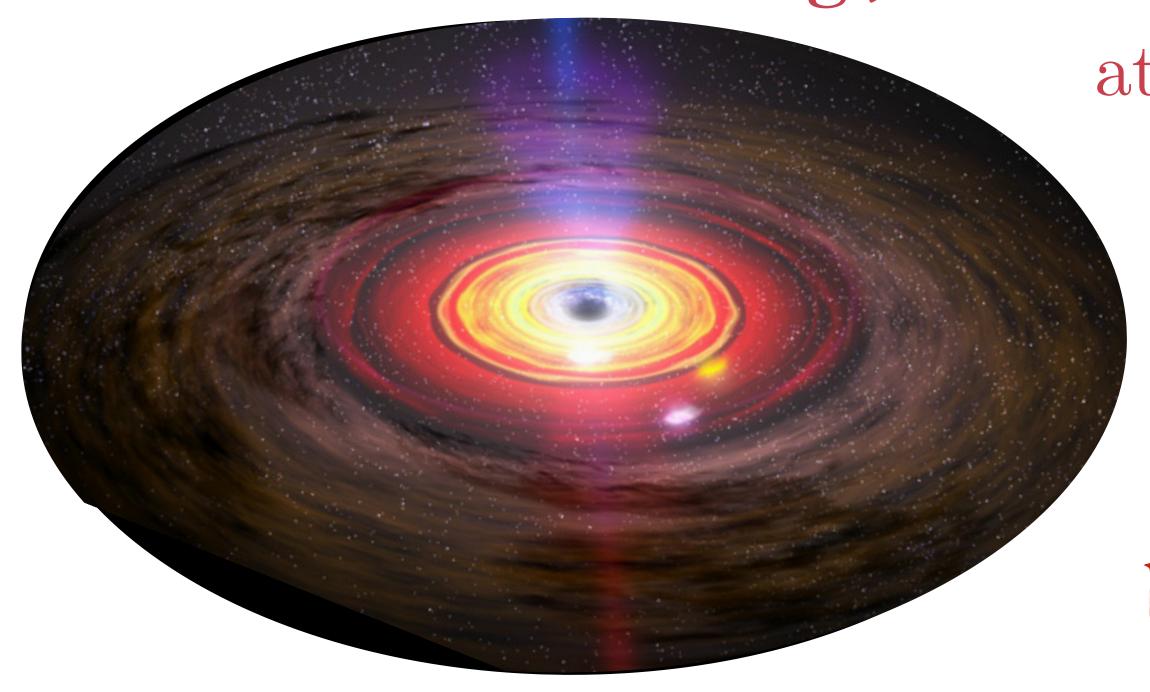
Jim Stone
Princeton University



Phys. Rev. Lett. 117, 235101(2016)

Low-luminosity black-hole accretion flows are weakly collisional

e.g., Galactic center Sgr A*



at
$$R \sim 0.1$$
 pc... (~10⁵ R_{horizon})

$$n \sim 100 \text{ cm}^{-3}$$
 $\lambda_{\text{mfp}} \sim 0.01 \text{ pc}$

$$k_B T \sim 2 \text{ keV}$$
 $\rho_i \sim 1 \text{ ppc}$

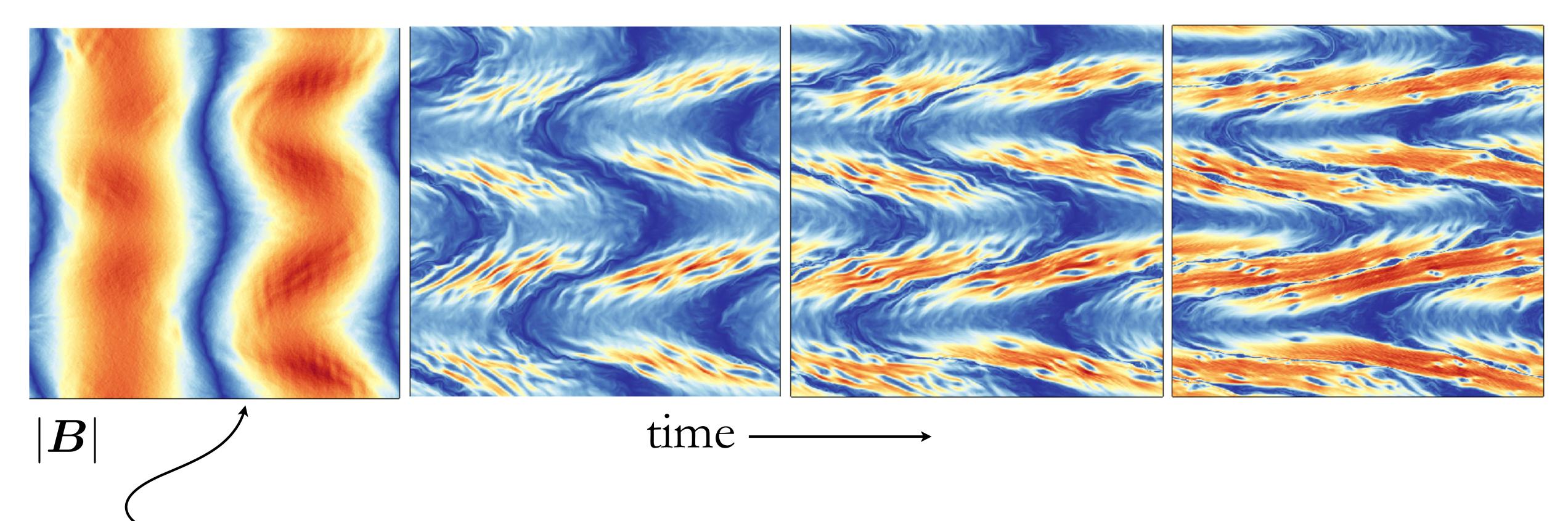
$$B \sim 1 \text{ mG}$$
 $\Omega_i \sim 10 \text{ s}^{-1}$

becomes collisionless within this radius

a kinetic approach is thus necessary to understand:

- transport of heat and angular momentum
- particle energization
- growth and structure of magnetic field

Magnetorotational Instability (MRI) amplifies magnetic fields and drives angular-momentum transport, even in collisionless plasmas



demonstration of MRI "channel modes" in collisionless plasma new feature: MRI drives pressure anisotropy, which triggers kinetic instabilities

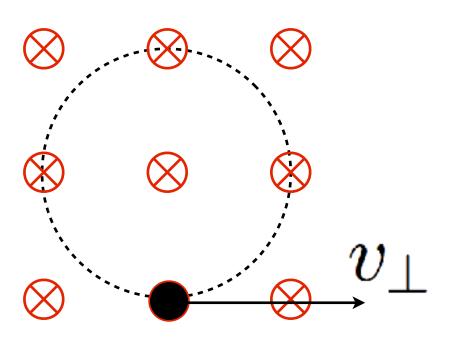
see Riquelme et al. 2012 & Hoshino 2013 for more on kinetic MRI in 2D

Change magnetic-field strength, generate velocity-space anisotropy...

adiabatic invariants:
$$\frac{\mathrm{d}}{\mathrm{d}t} \oint \boldsymbol{p} \cdot \mathrm{d}\boldsymbol{q} \simeq 0$$

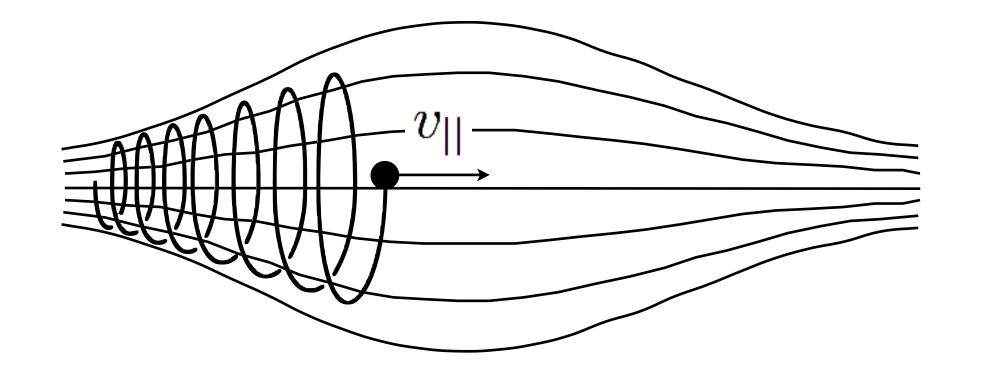
$$\mu = \frac{mv_{\perp}^2}{2B}$$

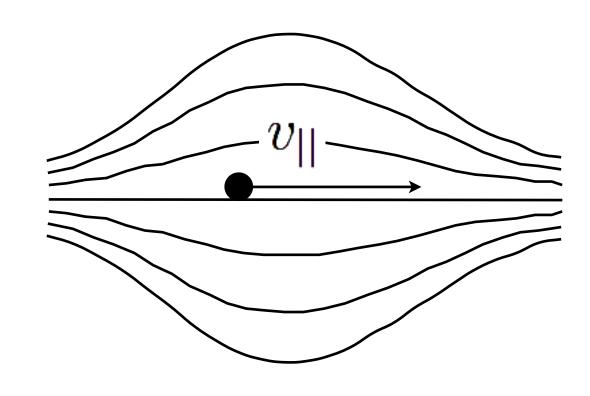
Kruskal (1958)



$$\otimes$$
 \otimes \otimes \otimes \otimes \otimes \otimes \otimes

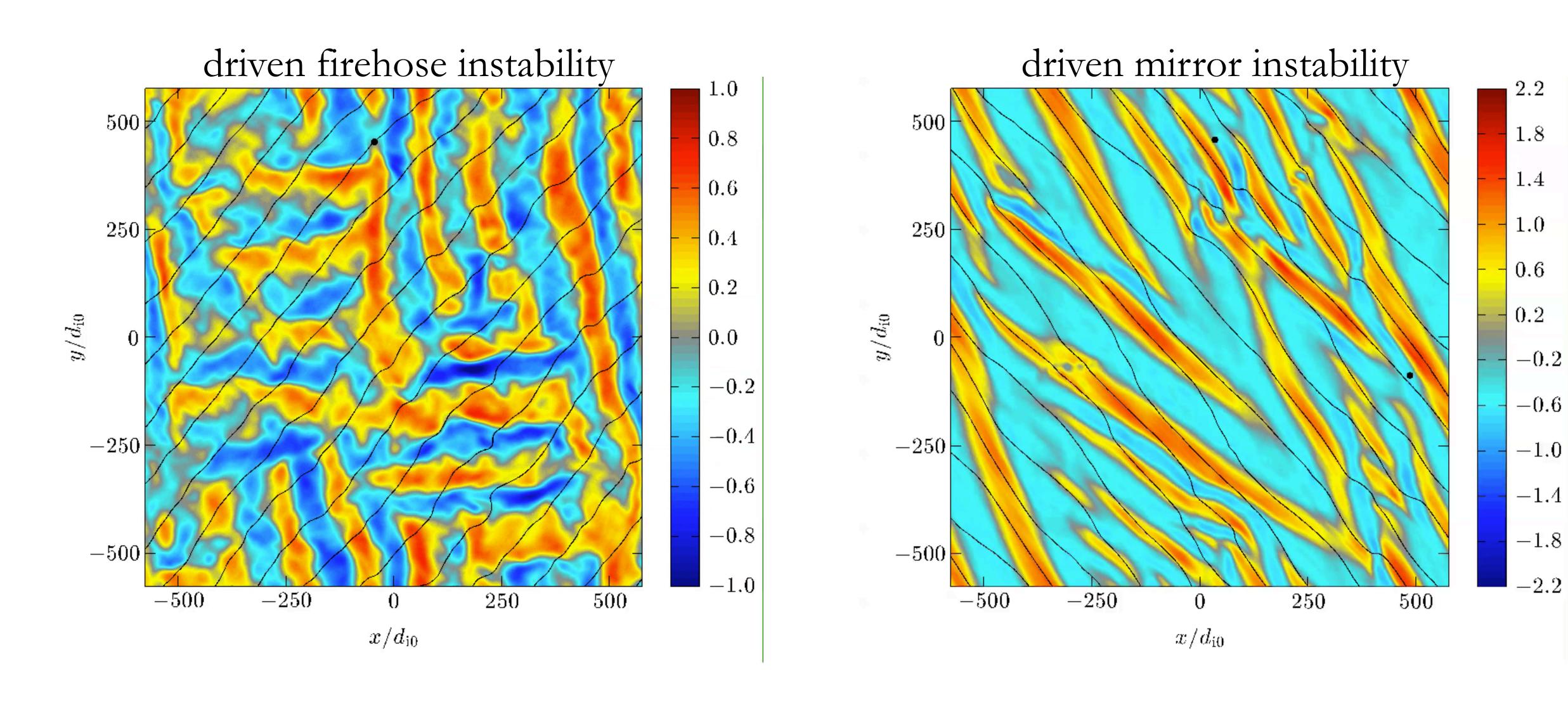
$$J = \oint \mathrm{d}\ell_\mathrm{B} \, m v_\parallel$$
Northrop & Teller (1960)





field-biased pressure anisotropy is important:

• triggers Larmor-scale instabilities, which set effective viscosity (and conductivity) Kunz, Schekochihin & Stone (2014), Phys. Rev. Lett.



field-biased pressure anisotropy is important:

• modifies linear MRI (Quataert, Dorland & Hammett 2002), nonlinear MRI (Squire, Quataert & Kunz 2017), and MRI turbulence (Sharma et al. 2006)

stress transporting angular momentum:

$$T_{R\phi} = \rho u_R u_\phi - \frac{B_R B_\phi}{4\pi} \left(1 + \frac{p_\perp - p_\parallel}{B^2/4\pi} \right)$$

Reynolds stress

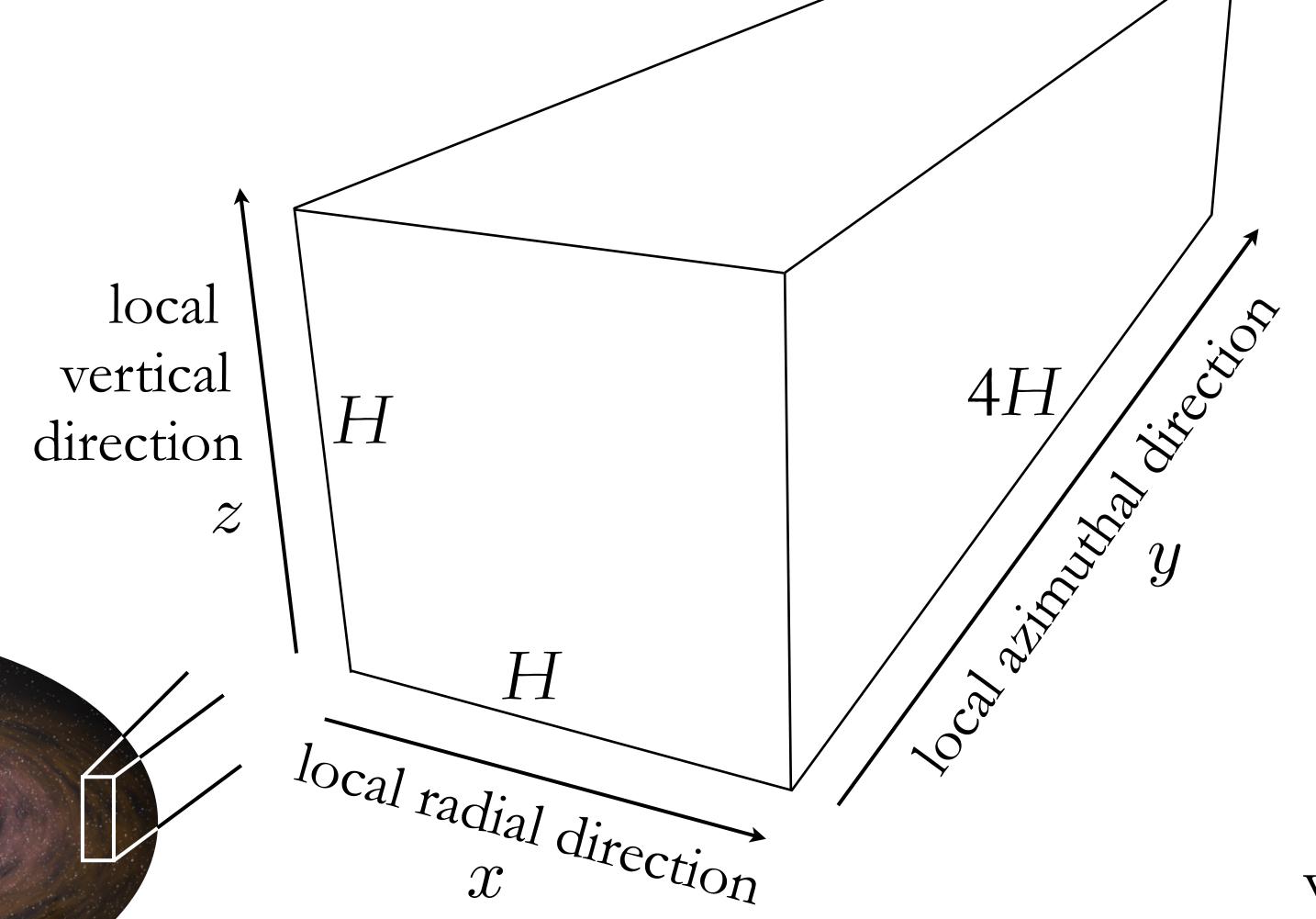
Maxwell "viscous" stress stress

hybrid-kinetic PIC shearing-box simulation of 3D3V magnetorotational turbulence

and dynamo, using Pegasus

$$\beta_0 = 400$$
 zero-net flux

$$\mathrm{Rm} \doteq \Omega_{\mathrm{rot}} H^2 / \eta = 37,500$$



384 x 1536 x 384 cells with 14.5 billion particles

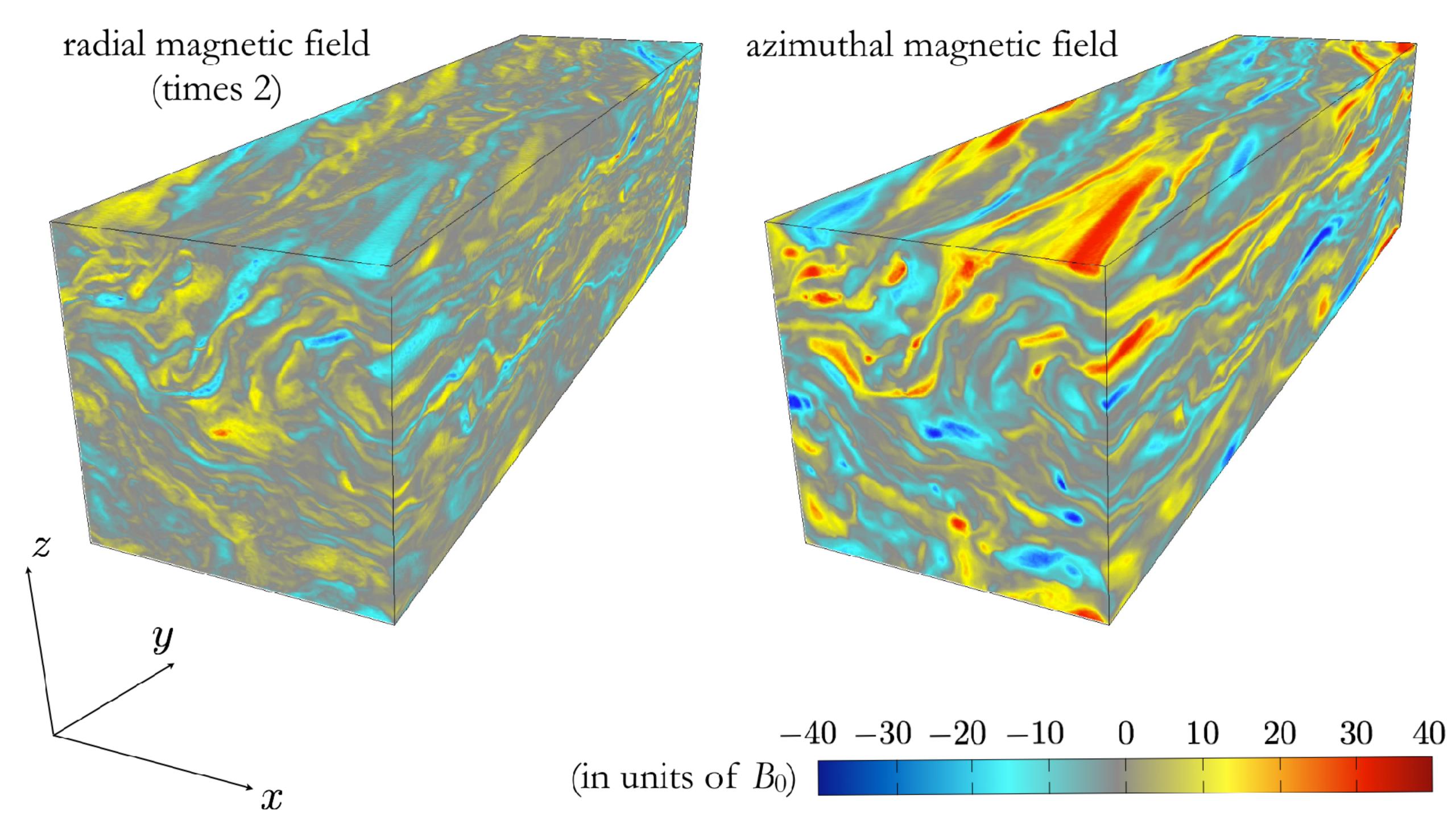
$$\left(\frac{\partial}{\partial t} - \frac{3}{2}\Omega_{\text{rot}}x\frac{\partial}{\partial y}\right)f + \boldsymbol{v}\cdot\boldsymbol{\nabla}f + \left[\frac{Ze}{m}\left(\boldsymbol{E} + \frac{\boldsymbol{v}}{c}\times\boldsymbol{B}\right) - 2\Omega_{\text{rot}}\hat{\boldsymbol{e}}_z\times\boldsymbol{v} + \frac{3}{2}\Omega_{\text{rot}}v_x\hat{\boldsymbol{e}}_y\right]\cdot\frac{\partial f}{\partial \boldsymbol{v}} = 0$$

$$m{E} + rac{m{u}}{c} imes m{B} = -rac{T_e}{e} m{\nabla} \ln n + rac{(m{\nabla} imes m{B}) imes m{B}}{4\pi Zen}$$

$$\left(\frac{\partial}{\partial t} - \frac{3}{2}\Omega_{\text{rot}}x\frac{\partial}{\partial y}\right)\boldsymbol{B} = -c\boldsymbol{\nabla}\times\boldsymbol{E} - \frac{3}{2}\Omega_{\text{rot}}B_x\hat{\boldsymbol{e}}_y$$

Questions to address:

- 1. What is the nonlinear saturated state of the MRI in a collisionless plasma?
- 2. How is marginal stability to kinetic instabilities achieved and maintained as the MRI amplifies the magnetic field?
- 3. What is the effective viscosity (and conductivity) in these disks? What role does collisionless wave damping play in limiting the efficacy of large-wavelength modes to transport angular momentum?
- 4. Connection between angular-momentum transport and particle heating?
- 5. How do these properties vary with radius and height in a global setting?

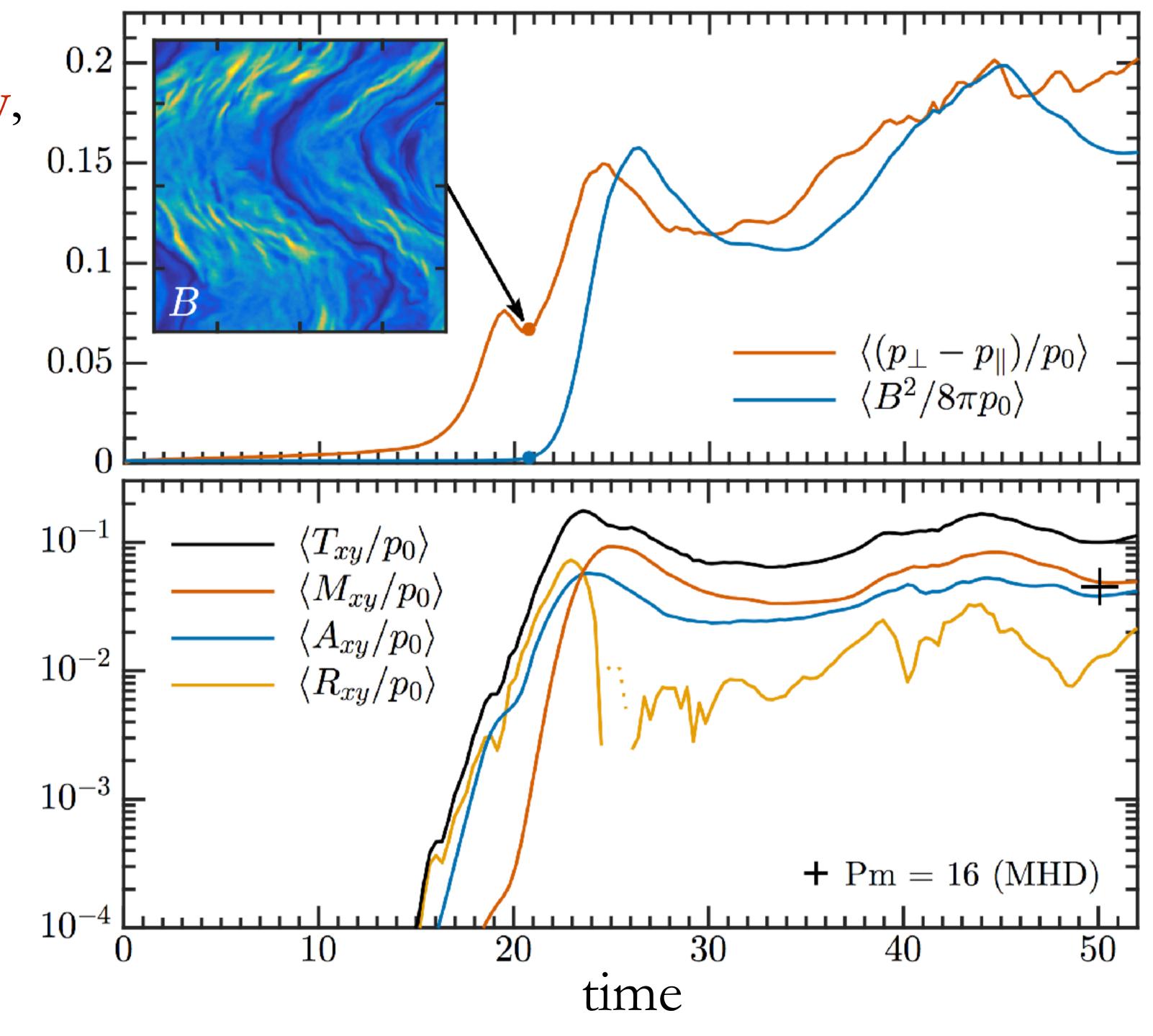


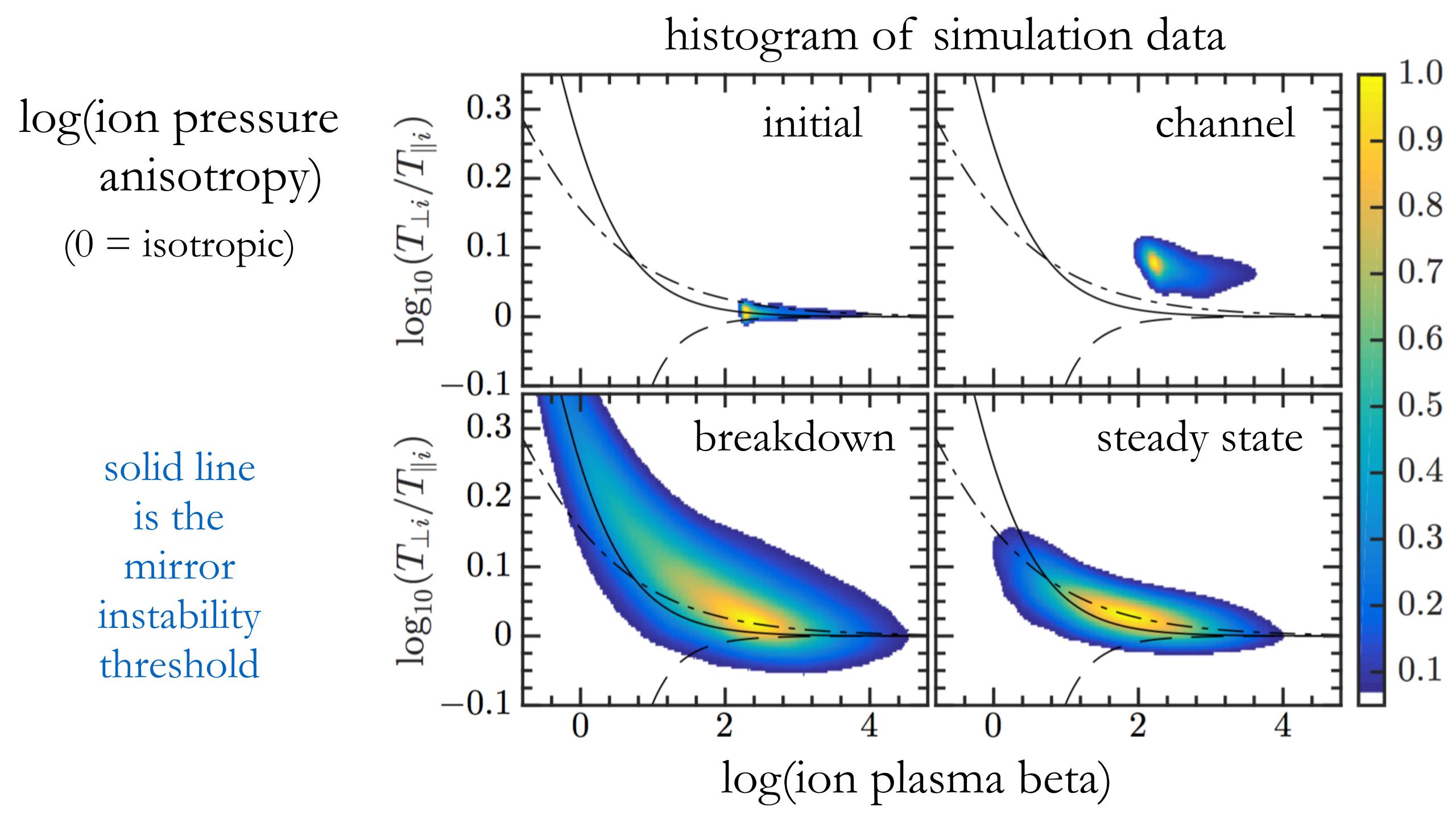
box-averaged energies vs. time $\langle \dot{B}_{x}^{2}/8\pi p_{0}
angle \ \langle \dot{B}_{y}^{2}/8\pi p_{0}
angle \ \langle \dot{B}_{z}^{2}/8\pi p_{0}
angle \ \langle \dot{B}_{z}^{2}/8\pi p_{0}
angle$ 10^{-1} 10^{-2} magnetic energy 10^{-3} $\langle p/p_0 \rangle$ vs $\Omega_{\rm rot} t$ (azimuthal dominates) 10^{-4} (a)40 50 203010 thermal pressure 10^{-1} $\langle m_i n_i u_{ix}^2/2p_0 \rangle$ $\langle m_i n_i u_{iy}^2/2p_0 \rangle$ $\langle m_i n_i u_{iz}^2/2p_0 \rangle$ 10^{-2} kinetic energy 20 30 $\Omega_{
m rot} t$

MRI drives pressure anisotropy,
triggers mirror modes,
regulate pressure anisotropy
(time lag related to insufficient
scale separation ...more later)

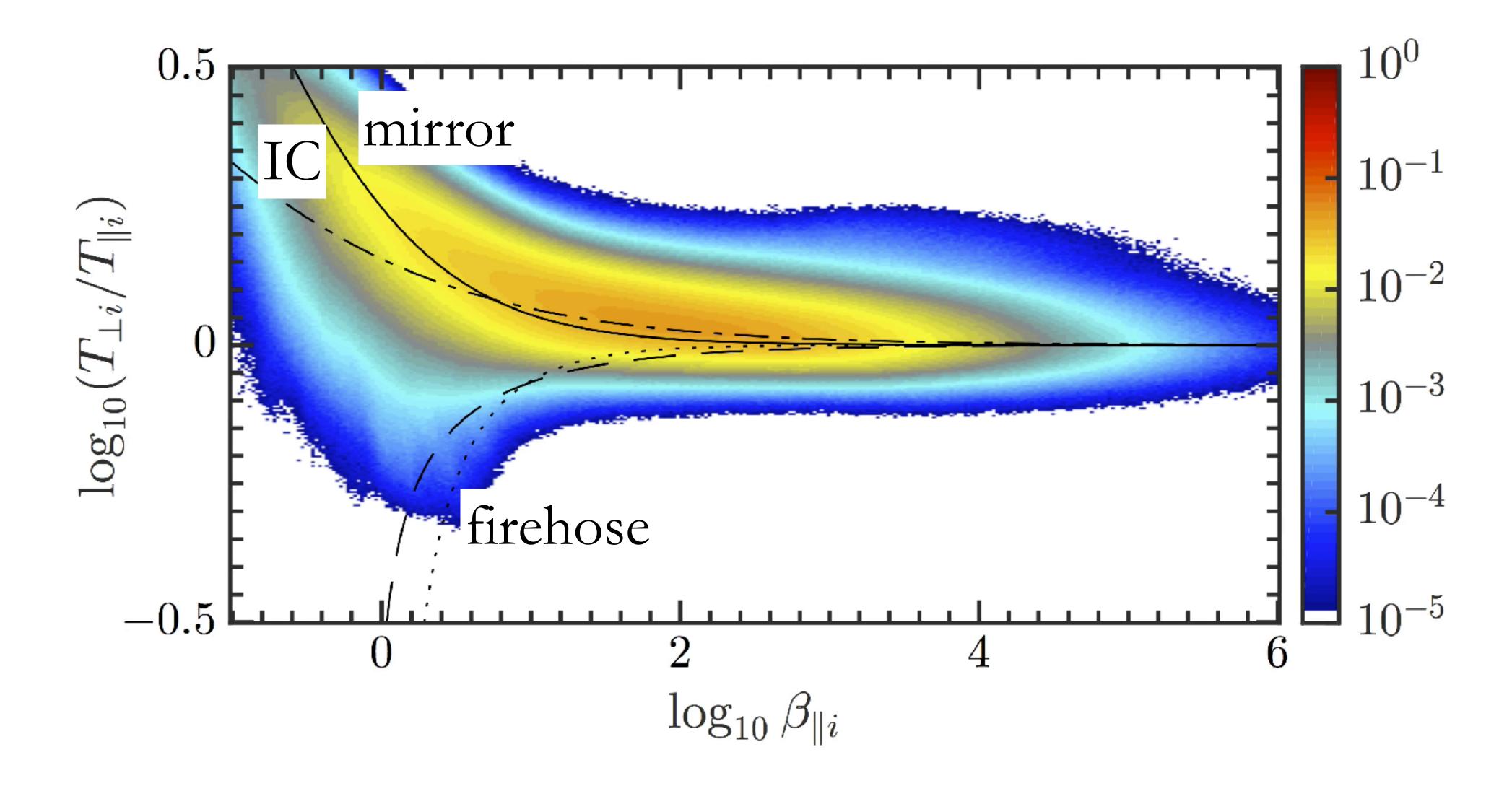
angular-momentum transport due to pressure anisotropy is comparable to (usual) transport by Maxwell stress

direct connection between plasma micro-physics and macro-scale dynamics





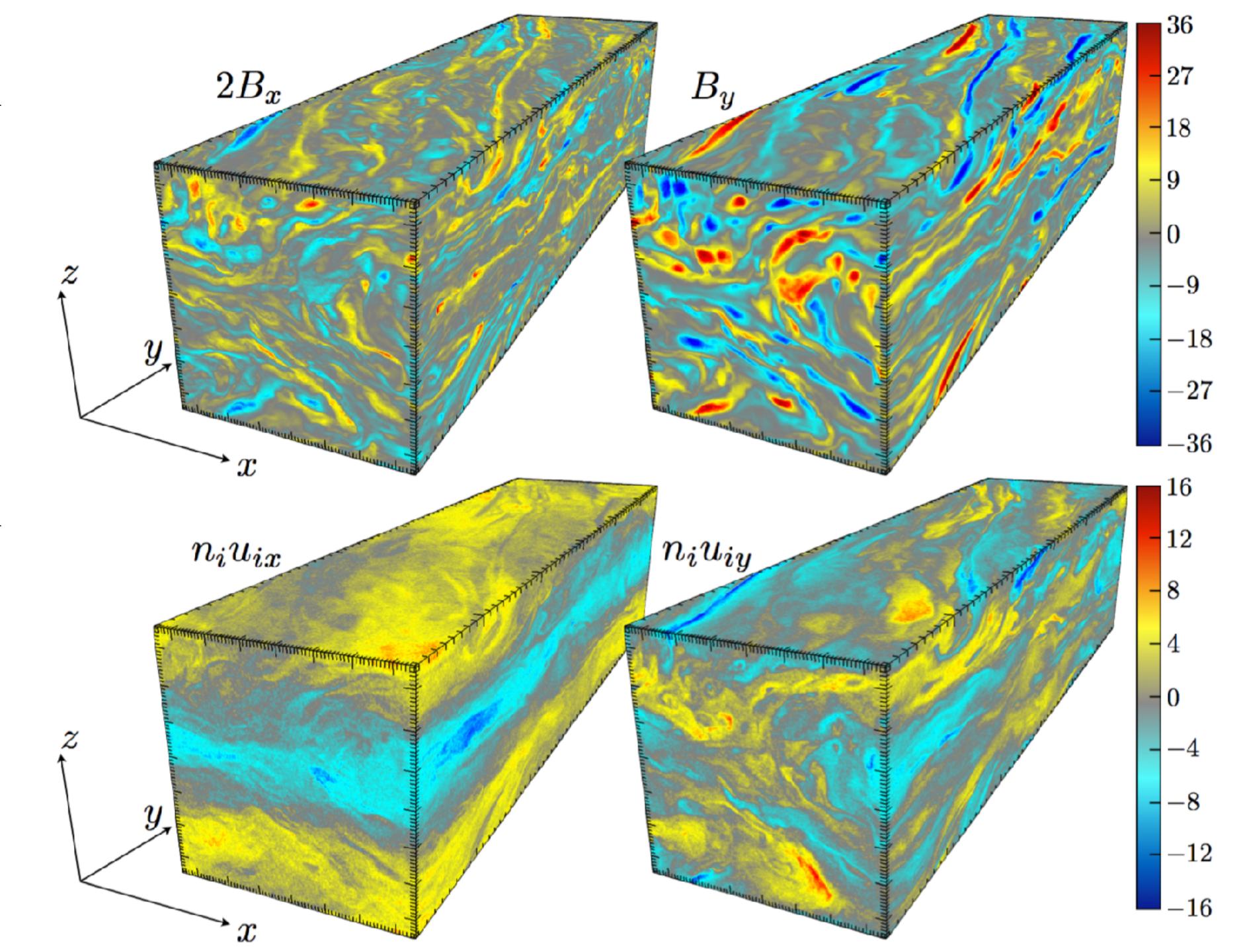
$$\log_{10} N(T_{\perp i}/T_{\parallel i}, \beta_{\parallel i})$$

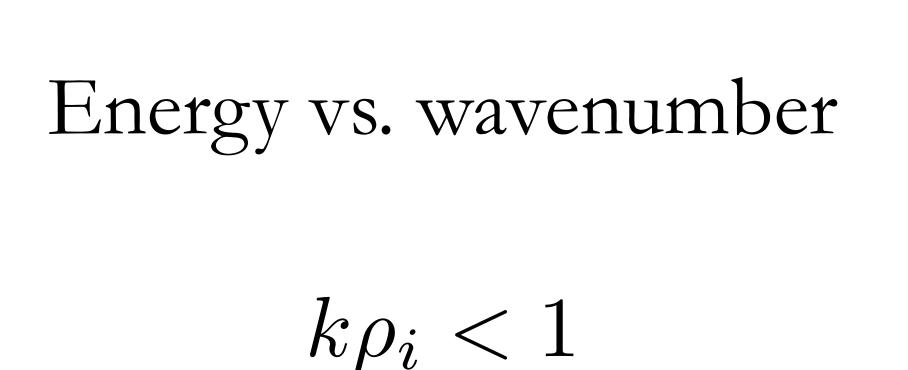


radial and azimuthal magnetic-field fluctuations

radial and azimuthal (ion) momentum fluctuations

behaves like a
Pm >> 1 plasma



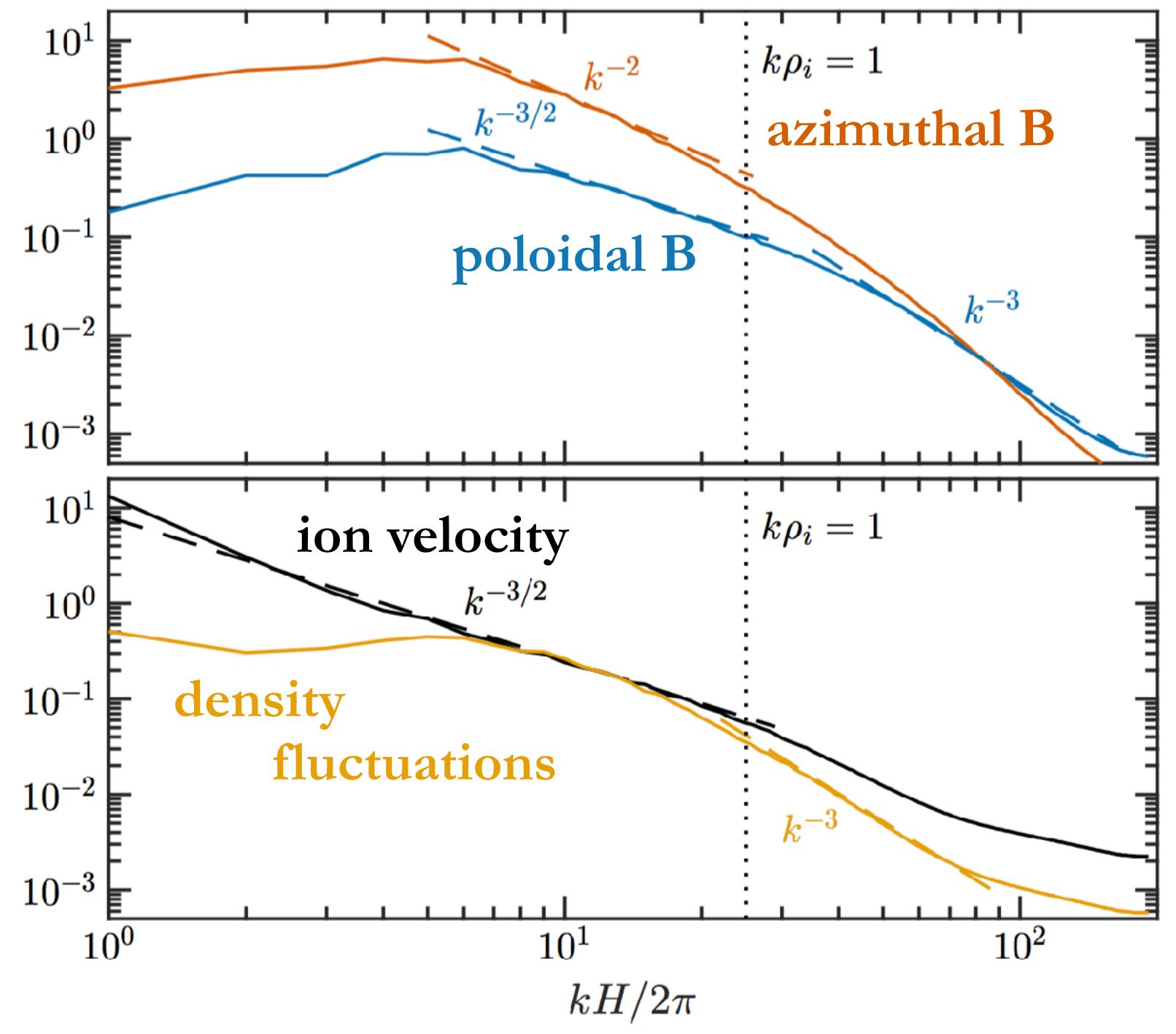


similar to MHD studies (e.g., Walker, Boldyrev & Lesur 2016)

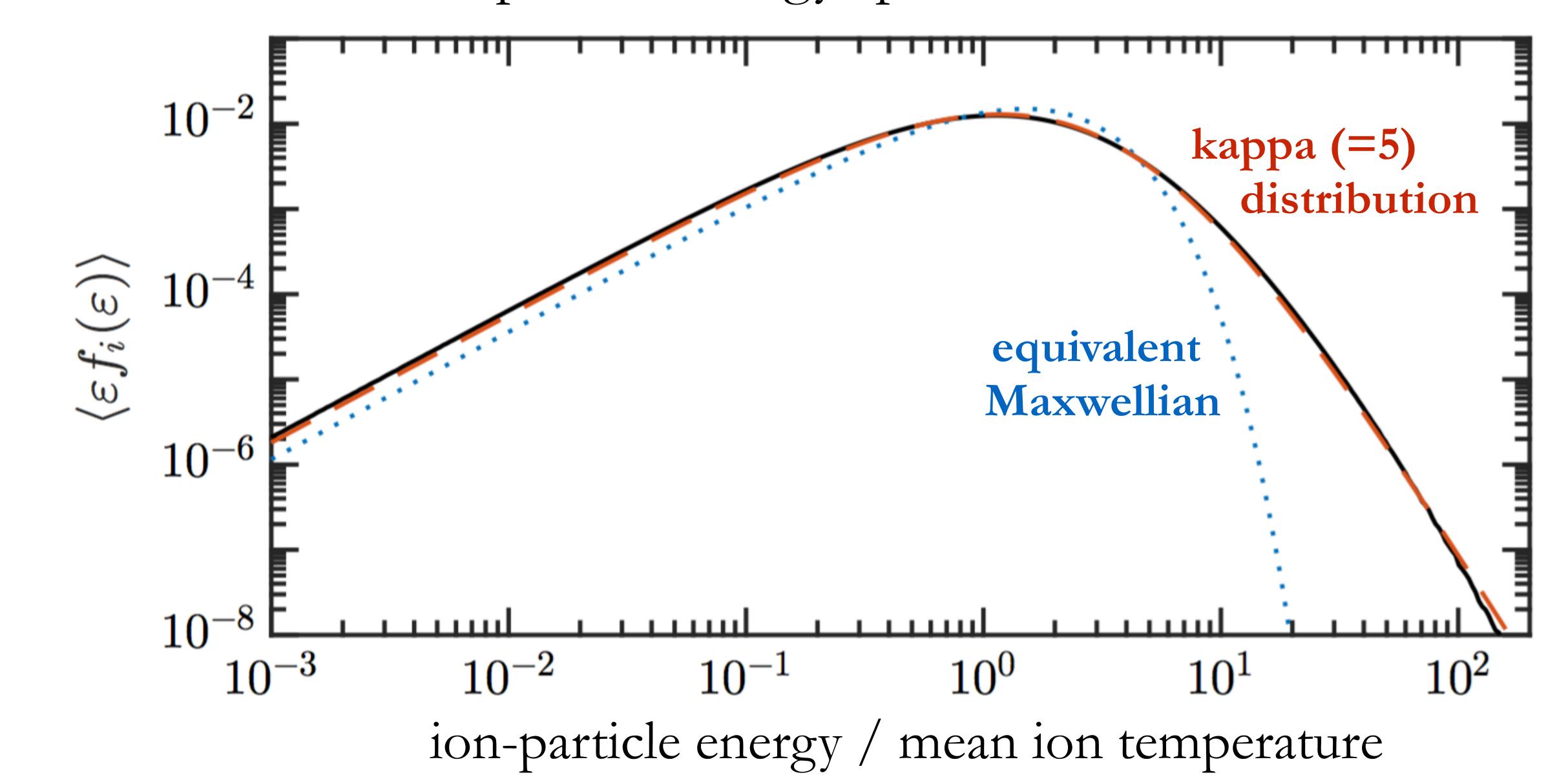
Alfvén-wave cascade along locally azimuthal "guide" field

$k\rho_i > 1$

kinetic-Alfvén-wave cascade (-3, like in solar wind)



ion-particle energy spectrum at end of run



Profits, Perils, and Price (of our approach)

Profits: First 3D3V kinetic simulation of magnetorotational turbulence and dynamo — *feasible!*

Ab initio demonstration that pressure anisotropy enhances angular-momentum transport in a way controlled by the kinetic microphysics

Despite the absence of (explicit) interparticle collisions, much at large scales looks like (anisotropic, Pm >> 1) MHD

Can afford good scale separation, which can capture both Alfvénic and kinetic-Alfvén-wave cascade

Profits, Perils, and Price (of our approach)

Perils: Massless, isothermal, fluid electrons (can improve this)

No electron heating included (can improve this)

More scale separation and orbits would be better

Price:
$$\cot \propto (k_{\text{max}}\rho_{i0})^4 \left(\frac{\Omega_{i0}}{\Omega_{\text{rot}}}\right)^{-4}$$
 ...ouch

BUT, doing fully kinetic with

$$m_i/m_e = 25$$
 $c/v_{th,e} = 5$ $\Delta x = \lambda_D/2$

4 particles per cell and all else the same

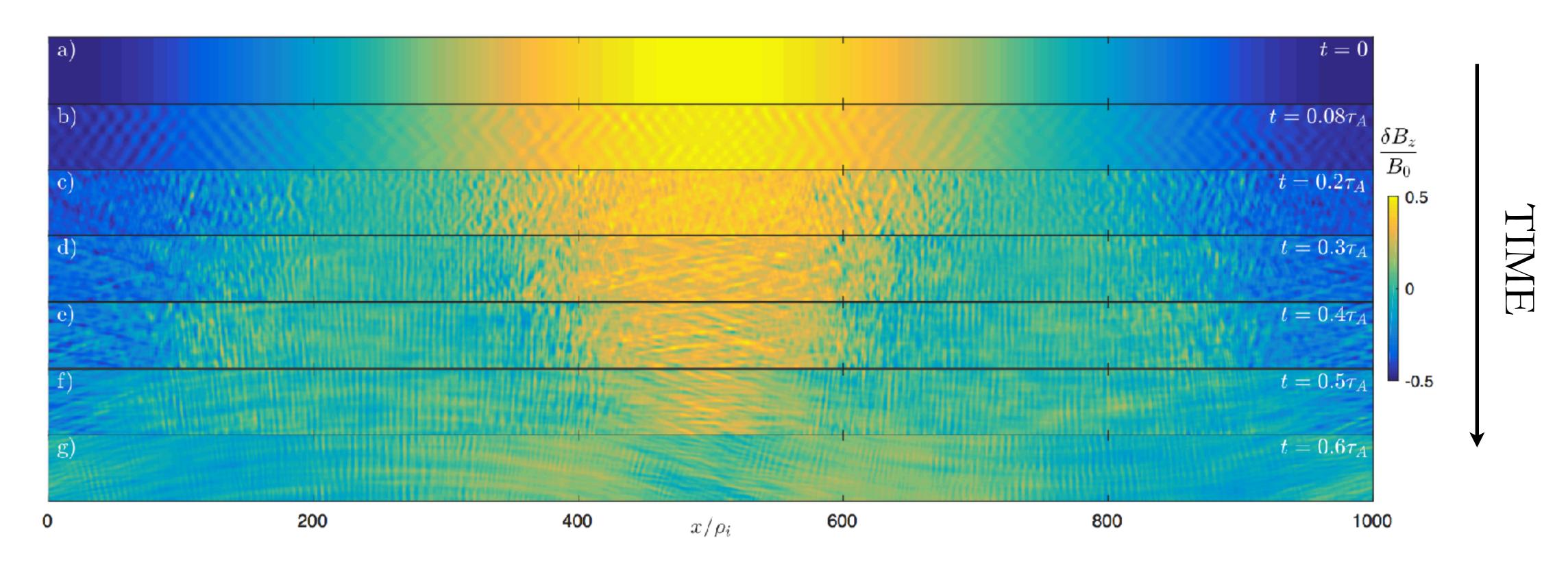
~10¹² CPU-hours per orbit!

Conclusions

- (1) Micro-scale physics can play a fundamental role in dictating what macro-scale dynamics are allowed in a given system;
- (2) 3D kinetic simulations of magnetorotational turbulence and plasma dynamo are now within reach (though expensive);
- (3) On the average, the MRI produces positive pressure anisotropy, which is regulated by mirror and ion-cyclotron instabilities (*ab initio proof!*);
- (4) Collisionless plasma acts like a high-Pm plasma, with a \(\beta\)-dependent effective viscosity. Beautiful energy spectra, with Alfvén-wave and kinetic-AW cascades.
- (5) Despite prior theoretical work and an awareness of the issues involved, I am *still* amazed that a collisionless turbulent plasma self-organizes to produce MHD-like behavior at large scales.

small adverts for some things I'm also excited about...

collisionless plasmas cannot support linearly polarized Alfvén waves above $\delta B_{\perp}/B_0 \sim \beta^{-1/2}$



Squire, Kunz, Quataert & Schekochihin, PRL, in press Squire, Quataert & Schekochihin, 2016, ApJ, 830, 25